This report should adhere to a more formal lab report structure. You can see what that entails here.

Now we have two ways to calculate the uncertainty of an experimental measurement. The first simply looks at the average of the uncertainties over a repeated measurements, as you did in the first lab. The new method uses the standard deviation. How do multiple measurements of $d$ change the uncertainty? Compare the uncertainties in the velocity of the ball using these two different methods.

Within the limits of your experimental accuracy, is momentum conserved during the collision?

3. Derive equation (1), starting from general physics principles.

4. From your results, compute the fractional loss of kinetic energy of translation during impact. Disregard rotational energy of the sphere.

5. Derive an expression for the fractional loss of kinetic energy of translation in terms only of $m$ and $M$, and compare with the value calculated in the preceding question. Consider the collision as a totally inelastic one.